FIELDIANA
 Zoology

Published by Fleld Museum of Natural History

Preliminary Key to the Turtles, Lizards, and Amphisbaenians of Iran

Steven C. Anderson
Callison College, University of the Pacific
Stockton. California

INTRODUCTION

Research toward a monographic treatment of the lizards, turtles, and amphisbaenians of Iran has been completed recently. Preparation of the final manuscript has been delayed, and a further delay in publication seems inevitable. For this reason, it seems desirable to publish the key to this fauna in a preliminary form as an aid to collectors and others concerned with the fauna of Iran and Southwest Asia generally. It is hoped that through use, its shortcomings will be revealed and communicated to the author, so that an improved, illustrated version can be included in the monograph.

To facilitate use of the key and to aid in recognition of significant range extensions, the distribution of turtles, lizards, and amphisbaenians is shown according to political divisions (ostans) in Table 1. The distribution according to natural geographic regions has been discussed in detail elsewhere (Anderson, 1968).

Non-herpetologists using this key are referred to Peters (1964) for definitions of unfamiliar terms. Species preceded by an asterisk (*) have not yet been recorded definitely from Iran. Certain difficulties attend the use of a key not accompanied by illustrations, diagnoses, and descriptions of each species, and individual specimens, especially juvenile and damaged specimens may not be identifiable on the basis of the key alone. This is particularly true in the case of geckos, in which loss of the

US ISSN 0015-0754
Library' of Congress Catalog Card Number: 74-77215

Fig. 1. Map of Iran showing the primary political divisions (ostans). 1. Tehran, 2. Gilan, 3. East Azarbaijan, 4. West Azarbaijan, 5. Kordestan-Kermanshah, 6. KhuzestanLorestan, 7. Esfahan, 8. Fars, 9. Kerman, 10. Baluchestan-Sistan, 11. Khorasan, 12. Mazandaran. Boundaries and ostan numbers after Fisher, 1968, p. 4. Redrawn).
tail is frequent; in some cases it has been necessary to rely on caudal characters in the key. This is true in the case of certain species which I have not examined, and have had to base the dichotomies on descriptions in the literature, and in other instances where statistical criteria are the only definitive means of separating taxa other than the characters I have used in the key. If the locality is known for a specimen, the distribution table (table 1) should aid in a tentative identification.

ACKNOWLEDGEMENTS

Thanks are owed a great many people, and I will enumerate my debts to these people in the monograph. Two groups of people must be mentioned here, however: the collectors and the museum curators, without whom all work in biosystematics would be impossible. Collectors of material (from all countries in Southwest Asia) that I have examined in preparation of this key include: Jeromie A. Anderson, William T. Blanford, Erica and Richard Clark, Anthony F. De Blase, Henry Field, E. S.

Fraser, John Gasperetti, Jerry Hassinger, Harry Hoogstraal, Walter P. Kennedy, Douglas Lay, H. Löffler, Yusuf Lazar, C. W. McEwan, Richard A. Martin, R. P. Miller, Sherman A. Minton, Jr., John W. Neal, Jr., Knud Paludan, R. W. Redding, Charles A. Reed, A. R. M. Rickards, Janice K. and William S. Street, Howart Stutz, Robert G. Tuck, Jr., Dan Womochel, and N. A. Zarudny.

Mr. and Mrs. William S. Street deserve special mention in this list, as their two Iranian expeditions recently have helped to assemble the most comprehensive collections in U. S. museums. Their collections, deposited in Field Museum of Natural History, along with my own earlier collection from southwestern Iran (deposited in the California Academy of Sciences) have formed the basis of my studies of the amphibians and reptiles of Iran. Street Expedition material from Afghanistan has also provided comparative data.

Also deserving of special mention are the anthropological expeditions of Henry Field. Dr. Field has maintained an active concern with promoting knowledge of the fauna of Southwest Asia, and specimens collected by his expeditions and by other collectors at his request have formed the foundation of U. S. herpetological collections from that area over the past 45 years. Most of this material is in Field Museum of Natural History and at the Museum of Comparative Zoology, Harvard.

Curators who have loaned me material and/or made me welcome at their institutions during the past 15 years include: Alan E. Leviton, California Academy of Sciences; Robert Inger and Hymen Marx, Field Museum of Natural History; James A. Peters, United States National Museum; Richard Zweifel and Charles Myers, American Museum of Natural History; Charles Walker, Donald Tinkle, and Arnold Kluge, Museum of Zoology, University of Michigan; Ernest E. Williams, Museum of Comparative Zoology, Harvard; Robert C. Stebbins, Museum of Vertebrate Zoology, University of California, Berkeley; Ilya Darevsky, Zoologicheski'i Institut, Leningrad; Josef Eiselt, Naturhistorisches Museum, Wien; Alice Grandison, J. C. Battersby, and E. N. Arnold, British Museum (Natural History); Jean Guibé; Museé Nationale d’Histoire Naturelle, Paris; F. W. Braestrup, Universitetes Zoologiske Museum, Copenhagen.

Much of the research leading to the development of this key was done while I was Associate Curator in the Department of Herpetology, California Academy of Sciences.

I thank Hymen Marx, Field Museum of Natural History, for comments and suggestions.

The work was supported in part by a grant from The American Philosophical Society (Grant No. 4959 - Penrose Fund, 1968) and by two Faculty Research Grants (1971 and 1972) from the University of the Pacific.

KEY TO THE TURTLES OF IRAN ${ }^{1}$

1a. Carapace without horny plates; feet with 3 claws Trionyx euphraticus (Daudin 1802)
lb. Carapace with horny plates; feet with 4 or 5 claws
2
2a. Head covered with undivided smooth skin; digits fully webbed 3
2b. Head covered by shields; digits not webbed . 4
3a. Plastron united to carapace by bony suture; plastron not hinged, immovable; anal plates of plastron pointed, their median suture shorter than interabdominal suture

Mauremys caspica caspica (Gmelin 1774)
3b. Plastron united to carapace by ligamentous attachment; plastron more or less distinctly hinged, movable (in adults); anals rounded, their median suture longer than interabdominal suture . Emys orbicularis (Linnaeus 1758)
4a. Forelimb with 4 claws . Testudo horsfieldii Gray 1844
4b. Forelimb with 5 claws 5
5a. Shell oval in outline, with smooth, rounded posterior margin; ground color light olive, with large, distinct, individual dark markings ... Testudo graeca ibera Pallas 1814
$5 b$. Shell elongate in outline, with upturned, emarginate posterior margin; ground color brownish olive, with very indistinct dark markings

Tesıudo graeca zarudnyi Nikolsky 1896

KEY TO THE LIZARDS AND AMPHISBAENIANS OF IRAN

\qquad
la. Limbs absen 2
lb. Limbs present . 5
2a. Eyelids well developed and movable; osteoderms underlie scales of head and body. ANGUIDAE . 3
2b. No movable eyelids; no osteoderms underlie scales of head and body............ . 4
3a. A deep lateral fold from head to level of vent; teeth blunt, with conical crowns Ophisaurus apodus (Pallas 1775)
3b. No lateral fold; teeth long and sharp Anguis fragilis colchicus (Nordmann 1840)
4a. Body ringed with distinct annuli; eyes very small, beneath head shields; scales not imbricate . Diplometopon zarudnyi Nikolsky 1907
4b. Body not ringed with distinct annuli; eyes usually large, well developed, with distinct iris and pupil, sometimes small (Typhlopidae and Leptotyphlopidae); scales imbricate snakes (not covered in this work)
5a. Skin soft, with granules, rarely imbricate scales; no paired, symmetrically arranged shields on top of head, which is covered by granules; neither suborbital nor frontosquamosal arch present on skull; clavicles broadened, forming loop at inner end; tongue smooth or covered by thread-like papillae; pupil of eye usually vertically elliptical (except in Pristurus). GEKKONIDAE
.6

[^0]5b. Skin never soft, composed of scales, plates, or granules; either suborbital and/or frontosquamosal arch present on skull; clavicles not broadened on inner end, or if broadened, then tongue covered by imbricate, scale-like papillae or by oblique folds . 44
6a. Eyelids movable; digits not dilated; procoelous vertebrae 7
6b. Eyelids immovable (spectacle); digits dilated or not; amphicoelous vertebrae 8
7a. Subdigital lamellae smooth ... Eublepharis angramainyu Anderson and Leviton 1966
7b. Subdigital lamallae each with several small tubercles
Eublepharis macularius (Blyth 1854)
8a. Pupil of eye round . Pristurus rupestris Blandford 1874
8b. Pupil of eye vertically elliptical . 9
9a. Digits strongly dilated . 10
9b. Digits not dilated . 17
10a. Each digit dilated at base, with double row of lamellae beneath, forming pads; terminal phalanges conpressed .. 11
10b. Each digit dilated at apex, terminating in subtriangular expansion, claw lying in longitudinal groove dividing apical expansion 15
11a. Tail with sharp, denticulated lateral edge; outer postmentals not in contact with labials Hemidactylus garnotii Duméril and Bibron 1836
11b. Tail without sharp, denticulated lateral edge (although in H. flaviviridis there is a ventrolateral row of small pointed tubercles); outer postmentals in contact with labials 12
12a. No enlarged dorsal tubercles, or if tubercles present, these are rounded, feebly keeled, not regularly arranged (none present in Iranian, Afghan, Pakistan, or northern Indian specimens examined); males with femoral pores only

Hemidactylus flaviviridis Rüppell 1835
12b. Enlarged dorsal tubercles numerous, strongly keeled, arranged in more or less regular longitudinal series; males with preanal pores only, or with both preanal and femoral pores

$\begin{aligned} \text { 13a. Males with } 15-27 \text { femoral and preanal pores; } & 6-10 \text { lamellae under 4th toe } \\ & \text { *Hemidactylus brookii Gray } 1845\end{aligned}$
13b. Males with preanal pores only; 8-14 lamellae under 4 th toe 14
14a. 8-11 lamellae and pairs of lamellae under basal expanded portion of 4th toe; 7-10 supralabials and 7-9 infralabials; males with 2-10 preanal pores.

Hemidactylus turcicus turcicus (Linnaeus 1758)
14b. 12-14 lamellae and pairs of lamellae under basal expanded portion of 4th toe; 10-12 supralabials and 8 - 10 infralabials; males with $9-13$ preanal pores

Hemidactylus persicus Anderson 1872
15a. Apical expansion of digit with fine lamellae beneath; postanal sacs present.
Ptyodactylus hasselquistii (Donndorff 1789)
15b. Apical expansion of digit smooth beneath (low magnification); postanal sacs absent
16a. Largest dorsal turbercles more than one-half height of ear opening; tubercles extending onto occiput and temporal area, much larger than surrounding granules; whorls of caudal tubercles separated by 3-4 transverse rows of small scales

Asaccus elisae (Werner 1895)
16b. Largest dorsal tubercles less than one-half height of ear opening; tubercles becoming much smaller on nape, usually not extending onto head, or if so, few in number, scarcely larger than surrounding granules; whorls of caudal tubercles separated by 5-6 transverse rows of small scales

Asaccus griseonotus Dixon and Anderson 1973
17a. Digits with well-defined lateral fringe of elongated, flexible pointed scales 18
17b. Digits without lateral fringe of elongate, flexible pointed scales, although scales may be denticulate 23
18a. Dorsal scales intermixed with larger rounded tubercles Crossobamon eversmanni (Wiegmann 1834)
18b. Dorsal scales uniform, not intermixed with tubercles 19
19a. Dorsal scales small, not cycloid; scales of tail not large, not plate-like, and not strongly imbricate 20
19b. Dorsal scales large, cycloid; tail covered above (at least on posterior two-thirds) bysingle row of large, plate-like, strongly imbricate scales21
20a. Back with 4 dark crescentic crossbars; 10-11 supralabials; forelimb does not reachbeyond tip of snoutStenodactylus affinis (Murray 1884)
20b. No dark crossbars on back; 12-15 supralabials; forelimb reaches beyond tip of snoutStenodactylus doriae (Blanford 1874)
2la. Large cycloid scales of dorsum extend forward to occiput
Teratoscincus scincus (Schlegel 1858)
21b. Large cycloid scales not extending forward beyond shoulders 22
22a. Not more than 60 scales round middle of body Teratoscincus bedriagai Nikolsky 1899
22b. About 100 scales round middle of body . . . Teratoscincus microlepis Nikolsky 1899
23a. Dorsal scales uniform, small, homogeneous 24
23b. Dorsal scales heterogeneous 27
24a. No postmentals (chin shields) Tropiocolotes latifi Leviton and Anderson 1972
24b. Postmentals present 25
25a. A single pair of postmentals, not in contact; dark crossbars of body absent or indis- tinct, sometimes two dorsolateral series of spotsTropiocolotes helenae (Nikolsky 1907)'
25b. Two pairs of postmental shields; dark crossbars of body and tail distinct 26
26a. Dark dorsal crossbars of body and tail broader than interspaces
Tropiocolotes persicus bakhiari Minton, Anderson, and Anderson 1970
26b. Dark dorsal crossbars less than one-half width of interspaces
Tropiocolotes persicus persicus (Nikolsky 1903)
27a. Dorsal scales of many sizes, all scales except labials and chin shields strongly keeledTropiocolotes heteropholis Minton, Anderson, and Anderson 1970
27b. Dorsal scales small, intermixed with larger tubercles; at least some scales of head andbody smooth (except Bunopus aspratilis)28
28a. Subdigital lamellae with a single transverse series of tubercles, particularly on the freemargin, seen under magnification (sometimes worn down in later part of epidermalcycle); distal phalanges not compressed29
28b. Subdigital lamellae smooth; distal phalanges compressed or not 31
29a. Postmentals (chin shields) absent Bunopus tuberculatus Blanford 1874
29b. Postmental shields present 30
30a. Ventrals strongly keeled; tail with large, strongly keeled, sharply pointed tubercles.no subcaudal platesBunopus aspratilis Anderson 1973
30b. Ventrals smooth; tail without enlarged tubercles, posterior three-fourths with en-larged subcaudal platesBunopus crassıcauda Nikolsky 1907

[^1]31a. Postmentals (chin shields) present, and well differentiated in size and shape from
granular small scales of chin and throat 32
3lb. Postmental shields absent (sometimes a short row of enlarged, subcircular scales present behind mental) 43
32a. Subfemoral tubercles present among granules of lower surface of thigh, in short row of2-6, often in contact with posterior row of large imbricate scales; males with con-tinuous series of preanal and femoral pores33
32b. No subfemoral tubercles; males with preanal pores only 341
33a. 24-29 strongly keeled, nonmucronate trihedral or subtrihedral tubercles in paraverte-bral row from occiput to level of vent; males with 28-41 (32-40 in Afghan specimensexamined) preanal and femoral pores (total of both sides).level of vent; males with 23-31 (24-29 in Afghan and Iranian specimens examined)preanal and femoral pores (total of both sides)

Cyrtodactylus caspius (Eichwald 1831)
34a. Subcaudal scales one head-width behind vent small, not enlarged and plate-like . 35
34b. Subcaudal scales one head-width behind vent enlarged, plate-like, 2 serially arranged plates, or pairs of plates covering each caudal segment 38
35a. Subcaudal plates smooth 36
35b. Subcaudal plates distinctly keeled ... 37
36a. Scattered small keeled tubercles among the large trihedral dorsal tubercles which form fairly regular longitudinal rows; tubercles on tail arranged around middle of each segment, not in terminal scale rowCyrtodactylus russowii (Strauch 1887)
36b. No scattered small tubercles among the rows of enlarged dorsal tubercles; caudal tubercles form terminal rings of each annulus

Cyrtodactylus kachhensis (Stoliczka 1872)
37a. 23-30 abdominal scales across middle of belly (about 11 scales in a distance across belly equal to length of snout)

Cyrtodacty/us heterocercus heterocercus (Blanford 1874)
37b. 14-16 abdominal scales across middle of belly (less than 10 scales in a distance across belly equal to length of snout)

Cyrtodactylus saggitifer (Nikolsky 1899)
38a. Subcaudal plates in 2 median series; dorsal tubercles distinctly smaller than interspaces; snout 2 to $21 / 4$ times longer than diameter of eye

Cyrtodactylus kirmanensis (Nikolsky 1899)
38b. Subcaudal plates in a single median series; dorsal tubercles smaller or larger than interspaces; snout length less than twice diameter of eye 39
39a. Caudal tubercles arranged around middle of each caudal segment, not forming terminal ring of each segment *Cyrtodactylus kotschyi (Steindachner 1870)
39b. Caudal tubercles (or enlarged keeled scales) forming terminal ring of each segment
40
40a. Dorsal tubercles distinctly smaller than interspaces, rounded, smooth or weakly keeled to subconical, but not distinctly trihedral; peritoneum and investiture of some internal organs of abdominal cavity darkly pigmented; limbs and tail thin, attenuate.41

[^2]
Abstract

40b. Dorsal tubercles distinctly larger than interspaces, strongly keeled and trihedral, peritoneum and investiture of organs of abdominal cavity without melanocytes; limbs and tail sturdy

41a. 24-28 abdominal scales across middle of belly (14-15 scales across belly in distance equal to length of snout); snout length less than $11 / 2$ times diameter of eye

Cyrtodactylus agamuroides (Nikolsky 1899)
4 lb . 10-16 abdominal scales across middle of belly (6-8 scales across belly in distance equal to length of snout); snout length $11 / 2$ times diameter of eye

Cyrtodactylus gastropholis (Werner 1917)
42a. 12-16 dorsal tubercles in longest transverse (chevron-shaped) series across back; width of dorsal tubercles distinctly smaller than greatest diameter of ear opening: 10-14 supralabials
.Cyrtodactylus scaber (Heyden 1827)
42b. 10 dorsal tubercles in longest transverse series across back; width of dorsal tubercles nearly equal to greatest diameter of ear opening; 9 supralabials

Cyrtodactylus brevipes (Blanford 1874)
43a. Tail cylindrical, very slender, and of almost uniform diameter from base to tip (tip blunt), no mucronate tubercles on annuli; distal phalanges of digits compressed, narrower than basal phalanges and strongly angularly bent

Agamura persica (Duméril 1856)
43b. Tail tapering gradually (tip of original tail sharp), 2 mucronate tubercles on either side of each annulus; digits cylindrical, not strongly angularly bent

Alsophylax spinicauda Strauch 1887
44a. No paired, symmetrically arranged shields on top of head, which is covered by granules, small scales, or tubercles 45
44 b . Enlarged, paired symmetrical plates on top of head (some granules may be present,but large shields predominate) . 70

45a. Venter covered by small juxtaposed granules or quadrangular scales; tongue deeply divided, long and slender, smooth, retractile into sheath at base; dorsum covered with numerous small juxtaposed granules or scales; dentition pleurodont. VARANIDAE 46
45b. Venter covered by imbricate scales, not granules; tongue broad and short, smooth or covered with villose papillae, not deeply forked; dorsum covered by imbricate scales or a combination of imbricate scales and granules; dentition primarily acrodont. AGAMIDAE

48
46a. Tail compressed throughout its length, with low, double-toothed crest above; abdominal scales in 88-110 transverse series from collar fold to groin

Varanus bengalensis bengalensis (Daudin 1802)
46b. Tail round in cross-section, or slightly compressed posteriorly, without double-toothed crest above; abdominal scales in $110-125$ transverse series from collar fold to groin

47
47a. Tail round in cross-section throughout its length; back with 5-8 (usually 6) gray bars in addition to 1-2 nuchal crossbars, pattern becoming indistinct in older animals, pattern of dots predominating; tail patterned nearly to tip with 19-28 dark crossbars Varanus griseus griseus (Daudin 1803)
47b. Posterior half of tail narrow in cross-section, compressed, distinct keel above; back with 5-8 (usually 6) sepia bars in addition to nuchal crossbar; tail with 13-19 dark crossbars, end of tail without patternVaranus griseus caspius (Eichwald 1841)
48a. Tympanum concealed or absent 49
48b. Tympanum exposed . 57
49a. Large fringed cutaneous fold at angle of mouth
Phrynocephalus mystaceus galli Krassowsky 1932
49b. No cutaneous fold at angle of mouth 50
50a. Dorsal scales heterogeneous, small scales intermixed with strongly enlarged scales 51
50b. Dorsal scales subequal, homogeneous 54
51a. Enlarged dorsal scales flat, not tubercular, posterior border not sharply upturned;sides of back of head and neck with long, flat, upturned fringe-like scales; bothsides of 4 th toe with long, well-developed fringes*Phrynocephalus luteoguttatus Boulenger 1887
51 b . Some enlarged dorsal scales nail-like, often tubercular, large part of scale raised freeof back; sides of back of head and neck without long flat, upturned fringe-like scales(but sometimes with short spiny scales); one or both. sides of 4th toe with shortfringe52
52a. Nasal shields in contact, or rarely separated by a single series of scales; crossbars ontail most intense (black) ventrally, though usually quite dark dorsally as well; alwayspresent ventrally Phrynocephalus scutellatus (Olivier 1807)
52b. Nasal shields separated by 3-5 (exceptionally 1, usually 3) series of scales; crossbarson tail usually most intense dorsally, rarely absent, and much lighter or absentventrally, sometimes interrupted dorsally, and seen as a series of spots along sidesof tail .. . 53
53a. No longitudinal crest of mucronate scales; a distinct transverse fold of skin acrossback of neck; entire nostril not seen when viewed from side of head; width of spacebetween nostrils considerably smaller than distance between nostril and preocularridge Phrynocephalus helioscopus helioscopus (Pallas 1771)
53b. A longitudinal nuchal crest of 3-8 mucronate, tubercular scales; no transverse fold ofskin across back of neck; entire nostril seen when viewed from side of head; width ofspace between nostrils equal to space bet ween nostril and preocular ridge
Phrynocephalus helioscopus persicus de Filippi 186354a. Sides of head and neck with long, projecting fringe-like scales; row of enlarged up-raised tubercular scales on posterior margin of thigh and sides of tail forming shortfringe; often a row of slightly enlarged scales along flank
*Phrynocephalus interscapularis Lichtenstein 185654b. Sides of head and neck without projecting fringe-like scales; no fringe of scales onposterior margin of thigh and sides of base of tail; no enlarged scales along flank. 55
55a. Nasal shields separated by 1-3 series of scales; ventral surface of tail with indistinctdark crossbars, or entire tip dark gray
Phrynocephalus maculatus maculatus Anderson 1872
55b. Nasal shields in contact, or partially separated; tail with 4 or 5 jet-black crossbars ventrally, tip of tail not black nor gray 56
56a. Distinct dark-margined light dorsolateral stripe from posterior angle of eye along body onto tail; single very elongate suborbital scale, 2 or 3 times as long as adjacent scales Phrynocephalus clarkorum Anderson and Leviton 1967
56 b. No light stripe along side of body; 3 suborbital scales of about equal size
Phrynocephalus ornatus Boulenger 1887
57a. Femoral pores present; tail strongly depressed throughout most of its length, shorter than snout-vent length, covered above by whorls of very large, spinous tubercles which are rounded at their bases
57b. Femoral pores absent; tail not strongly depressed, except sometimes at base, longer than snout-vent length unless broken, without whorls of large spinous tubercles rounded at base (large keeled mucronate scales may be arranged in annuli, however)

58a. Whorls of spinous scales on upper surface of tail not separated by small scales; back without transverse rows of enlarged spinous tubercles

Uromastyx microlepis Blanford 1874
58 b . Whorls of spinous scales on upper surface of tail separated by small scales; back with more or less regular transverse rows of enlarged spinous tubercles 59
59a. 9-15 femoral and preanal pores on each side; 7-10 tubercles across base of tail; 20-25 transverse rows of scales on middle of belly, on space corresponding to length of head (tip of snout to angle of jaw') Uromastyx asmussi (Strauch 1863)
59 b . 15 or more femoral and preanal pores on each side; 12 tubercles across base of tail; $30-40$ transverse rows of scales on middle of belly, on space corresponding to length of head
. Uromastix loricatus (Blanford 1874)
60a. Well-marked dorsel crest, at least on neck Calotes versicolor (Daudin 1802)
60b. No dorsal crest
61
6la. Caudal scales obliquely arranged, not forming annuli; tympanum small, more or less deeply sunk

62
6/b. Caudal scales forming more or less distinct annuli; tympanum usually larger than eye, superficial
62a. Dorsal scales homogeneous, large scales of back grading into progressively smaller scales of flanks. no distinctly larger scales among them. Agamo agilis Olivier 180°
62b. Dorsal scales heterogeneous, back and usually flanks with scales of varying sizes intermixed
63a. Abdominal scales distinctly keeled; largest dorsal scales about twice width of adjacent small scales; at least anterior oval vertebral spots linked together to form undulating gray or lavender vertebral stripe on neek and back, bordered by brown (darker) stripes extending onto dorsal surface of head; males with distinet gular sac

Agama hlanfordi Anderson 1966
63b. Atdominal scales smooth (rarely faintly keeled): largest dorsal scales about 3 tumes width of adjacent small scales; oval vertebral spots often indistinct, contained within dark crossbars, and not linked into longitudinal stripe; males without gular sac. 64
64a. Upper surface of thigh with patch of enlarged scales usually distinct. intermixed with smaller scales; flanks with numerous enlarged scales among smaller scales: "glandular" callose preanal scales in 2 rows; small patch of scales on neck just posterior to occiput in which direction of imbrication is reversed, i.e., these scales have anterior margins imbricate

Agama ruderata ruderata Olivier 1807
64b. Upper surface of thigh usually lacking distinctly enlarged scales, or with an area of large scales not intermixed with small scales; enlarged scales of back do not extend onto flanks; "glandular" preanal scales in single row; none of the neck scales showing reversed imbrication

Agama ruderata megalonyx (Günther 1864)
65a. Flanks without enlarged scales or tubercles: distal two-thirds or more of tail with segments composed of more than 2 annuli when viewed laterally (anterior portion of tail up to 2 or 3 head-widths posterior to vent may have only 2 annuli per segment). or segmentation indistinet

66
65b. Flanks with enlarged scales, arranged in patches or in regular senes; segments of tail composed of 2 annuli throughout length of tail . 68
66a. Median dorsal scales in straight longitudinal series, to- 10 across middle of back, grading into dorsolateral scales; hemipenes of male nonpigmented

- Agama melanura liraia (Blanford 1874)
$66 b$. Median dorsal scales in oblique longitudinal series, $16-20$ across middle of back. clearly set off from dorsolateral scales; hemıpenes of male black
67a. A prominent transverse fold of skin across nape Agama nupta nupia de Filippi 1843
67b. No fold of skın across nape Agama nupia fusca (Blanford 1876)

69a. Males with 115-188 (usually less than 170) scales round middle of body, females with 119-174 \qquad
\qquad Agama caucasica caucasica (Eichwald 1831)
69b. Males with 177-235 scales round middle of body, females with 190-239
Agama caucasica microlepis (Blanford 1874)
70a. Abdominal scales similar to dorsals; no femoral or preanal pores; tongue nicked anteriorly; body with osteodermal plates; premaxillary bones paired. SCINCIDAE

71
70b. Abdominal scales subquadrangular or quadrangular, much larger than dorsals, in 6-18 longitudinal rows across venter; femoral pores present; tongue deeply forked; no osteoderms on body; premaxillary bone single. LACERTIDAE 86
71 a . Eyelids immovable (spectacle); small species (adults less than 65 mm . from snout tovent); limbs well developed72
71 b . Eyelids movable; adults more than 65 mm . from snout to vent; limbs well developedor reduced74
72a. Prefontals forming a median suture; 2 frontoparietals
Ablepharus bivittatus bivittatus (Ménétriès 1832)
72b. Prefontals separated; usually a single frontoparietal 73
73a. Ear opening distinct Ablepharus pannonicus (Lichtenstein 1823)
73b. Ear hidden Ablepharus grayanus (Stoliczka 1872)
74a. Digits fringed laterally Scincus conirostris Blanford 1881
74b. Digits not fringed 75
75a. Limbs greatly reduced, with less than 5 digits; body elongate, serpentine. 76
75b. Limbs well developed, with 5 digits; body robust 80
76a. Fingers 4, toes 3 77
76b. Fingers 3, toes 2 or 3 78.
77a. Scale rows 20 at midbody ${ }^{1}$ Ophiomorus blanfordi Boulenger 1887
77b. Scale rows 22 at midbody Ophiomorus brevipes (Blanford 1874)
78a. Toes 2 Ophiomorus persicus (Steindachner 1867)
78b. Toes 3 79
79a. Parietals in contact posteriorly; prefrontals not in contact with supralabials (20 scalerows at midbody) Ophiomorus streeti Anderson and Leviton 1966
79 b . Parietals not in contact posteriorly; prefrontals in contact with supralabials (usually22 , occasionally 20 scale rows at midbody) . . Ophiomorus tridactylus (Blyth 1853)
80a. Lower eyelid with transparent shield 81
80b. Lower eyelid without transparent shield 83
8 la. Nostril between nasal and rostral, in emargination of latter; scales smooth; back withnumerous dark-margined light ocelli irregularly transversely arranged

Chalcides ocellatus ocellatus (Forskål 1775)
81b. Nostril in nasal shield; dorsal scales usually distinctly, but weakly bi- or tricarinate; back without ocelli82

82a. Parietal scales usually in contact behind interparietal; nuchals and postnuchals with 3 strongly developed keels; often a distinct light vertebral stripe, usually dark-margined and clearly set off from ground color Mabuya vittata (Olivier 1804)
82b. Parietal scales not in contact; nuchals smooth, post-nuchals smooth or very weakly keeled; no light vertebral stripe Mabuya aurata (Linnaeus 1758)
83a. 2 median rows of dorsal scales united into single row of broad scales; postnasal shieldpresentEumeces taeniolatus (Blyth 1854)
83b. 2 median rows of dorsal scales broader than those on flanks; no postnasal shield84
84a. Dorsum with dark vermiculate or mottled pattern, mid-dorsal spots tending to form longitudinal lines Eumeces schneiderii variegatus Schmidt 1939
84 b. Dorsum without dark vermiculate or mottled pattern 85
85a. Base of tail reddish in life ${ }^{1}$ Eumeces schneiderii zarudnyi Nikolsky 1899
85 b . Base of tail not reddish in life, dorsum with or without orange or reddish flecks.
Eumeces schneiderii princeps (Eichwald 1839)
86a. Eyelids immovable (spectacle) Ophisops elegans Ménétriès 1832
86b. Eyelids movable 87
87a. Nostril separated from 1st supralabial by nasal shield 88
87b. Nostril in contact with Ist supralabial, or separated from supralabial by very narrow brim 100
88a. Ventral plates in straight longitudinal series; lower nasal resting on lst supralabial.89
88b. Ventral plates in tessellated or oblique longitudinal series, converging posteriorly; lower nasal resting on 2 or 3 supralabials 90
89 a . Occipital in contact with interparietal, or separated from it by small shield; largetransparent scales of lower eyelid edged with black; ventral plates in 10 longitudinalseriesEremias guttulata (Lichtenstein 1823)
89b. Occipital absent or minute, not in contact with interparietal; transparent shields oflower eyelid not edged with black; ventral plates usually in 12 (rarely 10 or 14)longitudinal seriesEremias brevirostris (Blanford 1874)
90a. Subocular bordering mouth 91
90 b. Subocular not bordering mouth 97
91a. Lateral scales of 4 th toe forming a distinct fringe in its entire length 92
91b. Lateral scales of 4 th toe not forming a distinct fringe 93
92a. A broad dark dorsolateral stripe from nostril through eye, along body and side of tail,one or 2 additional narrower dark stripes mediad to these on each side, the remainderof the dark dorsal stripes interrupted and anastomosing to form a reticulate pat-tern, evident even in very young specimens; 4th toe with 2 complete rows of sub-digital scales, i.e., a total of 4 scales counted around toe (except that an extra scalemay be present at a joint)
*Eremias scripta (Strauch 1867)
92b. Dorsal pattern consists of 7 dark stripes, the outer dorsolateral stripe broadest, these stripes persisting unbroken in both adults and juveniles; 4th toe with single row of subdigital scales, i.e., total of 3 scales counted around toe (except an extra scale may be present at a joint)
Eremias lineolata (Nikolsky 1896)
93a. The 2 series of femoral pores broadly separated, space between the 2 series at least one-third the length of each Eremias pleskei Bedriaga 1907
93b. The 2 series of femoral pores meeting, or separated by space not greater than onefourth length of each94
94a. Back with 5-11 dark stripes, broader than interspaces, none of the stripes containing light ocelli or spots; stripes persistent in adults, but sometimes indistinct so that

[^3]back appears almost uniform sandy; 4th toe with 2 complete rows of subdigital scales and a complete row of sharply pointed lateral scales, i.e., a total of 4 scales counted around penultimate phalanx; collar scales small, usually only a single median collar scale distinctly larger than adjacent gulars.

Eremias fasciata Blanford 1874

Abstract

94b. Light ocelli or spots on upper flanks (rare exceptions), dark stripes of juveniles breaking up in adults to form spots or broken lines; 4th toe with single complete row of subdigital scales, a complete row of somewhat smaller ventrolateral scales, and a few scattered, much smaller, ventrolateral scales not forming complete row; total of 3 scales counted around penultimate phalanx; usually several collar scales distinctly larger than adjacent gulars 95

95a. Adults with dark interrupted dorsolateral black stripe forming ocelli with white spots, this dorsolateral pattern not contrasting strongly with interrupted dark stripes and spots of dorsum; juveniles with 3 dark stripes on dorsum between white-spotted dorsolateral stripes, vertebral stripe being black, bifurcated on nape (dark stripes breaking up into several irregular rows of dark spots with age); ventral surface of tail carmine red in juveniles (in life)

Eremias velox velox (Pallas 1771)
95b. Adults usually with black dorsolateral stripe, more or less continuous for at least major portion of its length, containing white spots, black stripe contrasting strongly with dorsal color pattern; juvenile with 4 dark stripes on dorsum between dorsolateral white-spotted stripes, vertebral stripe being white (dark stripes breaking up into 4 more or less regular rows of dark spots with age); ventral surface of tail not red in juveniles

96a. Adults with 4 more or less distinct rows of dark spots on dorsum between dorsolateral dark stripes; dark dorsolateral stripes usually containing white spots in single row; distal portion of tail bluish in juveniles (in life)

Eremias persica Blanford 1874
96b. Adults usually without dark stripes or spots on mid-dorsum; dorsolateral region with alternate rows of light and dark spots, often fusing longitudinally, forming 2-4 longitudinal stripes, often broken, the impression being 3-4 rows of white spots on flanks; ventral surface of tail yellow in juveniles (in life) . . Eremias strauchi Kessler 1878
97a. 4th toe with distinct fringe on both lateral and medial sides, formed by complete row of sharply pointed lateral scales and complete row of similar medial scales; ungual lamellae of fingers and toes with prominent, flat, lateral expansions

Eremias grammica (Lichtenstein 1823)
97b. 4th toe without distinct fringe; ungual lamellae without prominent lateral expansion. 98
98a. Sth toe with 2 complete rows of subdigital scales and incomplete row of small lateral scales; 2nd supraocular (1st of 2 large, undivided supraoculars) as long as or shorter than its distance from 2nd loreal

Eremias arguta (Pallas 1771)
98 b . Sth toe with single complete row of subdigital scales and a few scattered lateral scales not forming complete row; 2nd supraocular (1st of 2 large, undivided supraoculars) longer than its distance from 2nd loreal

99
99a. 4th toe with single row of subdigital scales; usually distinct tympanic shield; 4th supraocular usually distinct

Eremias intermedia (Strauch 1876)
99b. 4th toe with 2 rows of subdigital scales, internal much larger; tympanic scale usually small or indistinct; 4th supraocular usually indistinct

Eremias nigrocellata (Nikolsky 1896)
100a. Digits with lateral fringes . 101
100b. Digits without lateral fringes . 104

101a. 3 scales around fingers; ventrals usually 10 in longest transverse row across belly; dorsal scales feebly keeled, 48 or more across middle of body

Acanthodactylus micropholis Blanford 1874
101b. 4 scales around fingers; ventrals $13-18$ in longest transverse row across belly; dorsal scales strongly keeled, 54 or less across middle of body102

102a. Ventral scales in oblique or irregular longitudinal series, not forming straight longitudinal rows: 18-22 dorsal scales in transverse series between hind limbs

Acanthodactylus fraseri Boulenger 1918
102b. Veniral scales in straight longitudinal rows, at least down middle of venter; outer series may be somewhat oblique; 10-16 dorsal scales in transverse series between hind limbs

103
103a. Dorsal color pattern reticulate, not lineate even in young specimens, indistinct in large adults: 13-18 ventral plates in longest transverse series; 38-54 dorsal scales across middle of back Acanthodactylus cantoris schmidti Haas 1957
103b. Dorsal color pattern lineate, young specimens with 6 dorsal and one lateral light longitudinal streaks, with or without round white spots between them; some adults nearly uniform, no distinct pattern; 12-16 ventral plates in longest transverse series; 34-46 dorsal scales across back Acamhodactylus camoris blanfordi Boulenger 1918
104a. Lower eyelid with 5-7 transparent shields edged with black; subdigital lamellae keeledApathya cappadocica urmiana Lantz and Suchow 1934
104b. Lower eyelid without transparent shields; subdigital lamellae smooth or tuberculate 105
105a. Ventral plates more or less rectangular with rectilinear or nearly rectilinear posterior margins . 106
105b. Ventral plates trapezoidal, with notches between longitudinal rows 108
106a. Dorsal scales strongly keeled, more or less distinctly hexagonal; collar serrated Lacerta chlorogaster Boulenger 1908
106b. Dorsal scales smooth, granular, round or oval, collar not serrated 107
107a. 5-6 (rarely 4) supralabials anterior to subocular; normally 2 superposed post nasals (but sometimes fused on one or both sides of head); pterygoid teeth strongly developed; outer ventrals with small black spots Lacerta brandtii de Filippi 1863
107b. 3-4 (rarely 5) supralabials anterior to subocular; normally a single postnasal; pterygoid tecth absent; outer ventrals without black spots (turquoise blue spots present in males)
. Lacerta saxicola Eversmann 1834
108a. Ventral plates in 10 longitudinal series; 34-37 dorsal scales across middle of body 109
108b. Ventral plates in 6 or 8 longitudinal series; 38 or more dorsal scales across middle of body

110
109a. Outer row of ventrals (marginals) smooth; 20-22 gulars; $13-17$ femoral pores on each side; lower edge of subocular one-half or less than one-half maximal length of shield

Lacerta princeps princeps Blanford 1874
109b. Outer row of ventrals (marginals) kceled; 17-19 gulars; $16-21$ femoral pores on each side; lower edge of subocular one-half or more than one-half maximal length of shicld . Lacerta princeps kurdistanica Suchow 1936
110a. 17-21 femoral pores, row of pores reaches knee; usually less than 20 temporal scales; 5th submaxillary shicld always well developed; young specimens usually with uninterrupted lateral light line in addition to vertebral and dorsolateral lines

Lacerta strigata Eichwald 1831
110b. 12-16 femoral pores, row of pores does not attain knee; usually more than 20 temporal scales: 5 th submaxillary small or absent: young specimens with lateral light line interrupted in its anterior half Lacerta trilineata media Lantz and Cyrén 1920

REFERENCES

Anderson, Steven C.
1968. Zoogeographic analysis of the lizard fauna of Iran. In Fisher, W. B., ed., The Cambridge history of Iran, vol. 1, The Iand of Iran, pp. 305-371, Cambridge University Press, London.

Fisiler. W. B.
1968. Physical geography. In Fisher, W. B., ed., The Cambridge history of Iran, vol. 1, The land of Iran, pp. 3-110, Cambridge University Press, London.

Peters, James A.
1964. Dictionary of herpetology. Hafner, New York. 392 pp.

Scimidtler, Josef Joiann and Josef Friedricii Scimmidtler
1972. Zwerggeckos aus dem Zagros-Gebirge (Iran). Salamandra, 8, pp. 59-66.

Witte, Gaston Fr. de
1973. Description d’un Gekkonidae nouveau de l’Iran (Reptilia Sauria) Bull. Inst. r. Sci. nat Belg. Biologie, 49, pp. 1-6.

Table 1. Summary of distribution of turtles, lizards, and amphisbaenians among the political divisions of Iran (see fig. 1).

Key: + definite record; ? doubtful record; P probable occurrence, but no record. Species preceded by an asterisk (*) have not been recorded definitely from Iran.

Species

1. Emy's orbicularis
2. Mauremys caspica caspica
3. Testudo graeca ibera
4. Testudo graeca zarudnyi
5. Testudo horsfieldii
6. Trionyx euphraticus
7. Agama agilis
8. Agama blanfordi
9. Agama caucasica caucasica
10. Agama caucasica microlepis
11. Agama erythrogastra

* Agama melanura liraıa

12. Agamia nupta tupta
13. Agamia nupta fusca
14. Agama ruderata ruderata
15. Agama ruderata megalonyx
16. Calotes versicolor

* Phrynocephalus clarkorum

17. Phrynocephalus helioscopus helioscopus
18. Phrynocephalus helioscopus persicus

* Phrvnocephalus interscapularis
* Phrynocephalus luteoguttatus

19. Phrynocephalus maculatus maculatus
20. Phrınocephalus mystaceus galli
21. Phrynocephalus ornatus
22. Phrynocephalus scutellatus
23. Uromastyx asmussi
24. Uromastyx loricatus
25. Uromastyx microlepis
26. Anguis fragilis colchicus
27. Ophisaurus apodus
28. Agamura persica
29. Alsophylax spinicauda
30. Bunopus aspratilis
31. Bunopus crassicauda
32. Bunopus tuberculatus
33. Crossobamon eversmanni
34. Cyriodactylus agamuroides
35. Cyrlodactylus brevipes
36. Cyrtodactylus caspius
37. Cyriodactylus fedischenkoi
38. Cyrtodactylus gasiropholis
39. Cyrtodactylus heterocercus heterocercus
40. Cyrtodactylus kachhensis

Species

41. Cyrtodactylus kirmanensis * Cyrtodactylus kotschyi
42. Cyrtodactylus russowii
43. Cyrtodactylus sagittifer
44. Cyrtodactylus scaber
45. Eublepharis angramainyu
46. Eublepharis macularius
47. Hemidactylias flaviviridis
48. Hemidactylus garnotii
49. Hemidactylus persicus
50. Hemidactylus turcicus turcicus
51. Asaccus elisae
52. Asaccus griseonotus
53. Pristurus rupestris
54. Ptyodactylus hasselquistii
55. Stenodactylus affinis
56. Stenodactylus doriae
57. Teratoscincus bedriagai
58. Teratoscincus microlepis
59. Teratoscincus scincus
60. Tropiocolotes helenae
61. Tropiocolotes heteropholis
62. Tropiocolotes latifi
63. Tropiocolotes persicus persicus
64. Tropiocolotes persicus bakhtiari
65. Acanthodactylus cantoris blanfordi
66. Acanthodactylus cantoris schmidti
67. Acanthodactylus fraseri
68. Acanthodactylus micropholis
69. Apathya cappadocica urmiana
70. Eremias arguta
71. Eremias brevirostris
72. Eremias fasciata
73. Eremias grammica
74. Eremias guttulata
75. Eremias intermedia
76. Eremias lineolata
77. Eremias nigrocellata
78. Eremias persica
79. Eremias pleskei * Eremias scripta
80. Eremias strauchi
81. Eremias velox velox
82. Lacerta brandtii
83. Lacerta chlorogaster
84. Lacerta princeps princeps
85. Lacerta princeps kurdistanica
86. Lacerta saxicola defilippii

(continued)

Species

87. Lacerla savicola raddei
88. Lacerta strigata
89. Lacerta trilineata media
90. Ophisops elegans
91. Ahlepharus hivillatus bivillalus
92. Ahlepharus grayamus
93. Ahlepharus pannonicus
94. Chalcides ocellatus ocellatus
95. Eiunteces schneiderii princeps
96. Ennueces schneiderii variegalus
97. Einneces schmeiderii zarudnvi
98. Einneces taeniolatus
99. Mahusa aurata
100. Mahuiva vitiata
101. Ophiontorus hlanfordi
102. Ophiomorus brevipes
103. Ophionworus persicus
104. Ophiontorus streeti
105. Ophiontorus Iridacty/us
106. Scincus conirosiris
107. V'aramus hengalensis hengalensis
108. Varamus griseus griseus
109. Varamus griseus caspius
110. Diplometopon zarudnyi

IOTAL (species and subspecies)

[^0]: 1 Marine turtles of the Persian Gulf are not included.

[^1]: 'Schmidtler and Schmidtler (1972) have described a new subspecies, Tropiocolotes helenae fasciatus, from Kordestan-Kermanshah and Khuzestan-Lorestan Provinces. The two subspecies are distinguished as follows: T. h. helenae-65-84 dorsal scales between axilla and groin, 0-6 indistinct dark dorsal crossbars with white posterior margins; T. h. fasciatus $\quad 80-92$ dorsal scales, 5 distinct crossbars with white posterior margins.

[^2]: ' DeWitte (1973) has described a new genus and species, Rhinogekko misonnei, from the Dasht-e Lut (Kerman, Baluchistan-Sistan, and Khorasan Provinces). It would appear at this point in the key, and is distinguished from all other species in having the nostril situated at the apex of a prominent caruncle composed of four scales. It is closely related (if not identical) to "Agamura" femoralis Smith 1933, which is known from Baluchistan, Pakistan.

[^3]: ${ }^{1}$ Preserved individuals in which the color has faded cannot be identified to the subspecies level, as far as I have been able to determine.

